
TECHNICAL NOTES AND SHORT PAPERS 

On Optimal Alternating Direction Parameters 
for Singular Matrices 

By R. B. Kellogg and J. Spanier 

1. Introduction. One of the most widely used iterative methods for approxi- 
mating solutions of partial difference equations in two space dimensions is the 
method of alternating directions, considered originally by Peaceman and Rach- 
ford [6]. Application of this method involves the selection of certain auxiliary num- 
bers, called acceleration parameters, which are chosen to enhance the convergence 
of the iterative process. Extremely favorable convergence rates may be obtained 
for this method, but only when the acceleration parameters are properly chosen. 

The matrix problem to be solved may be written in the form 

(1) (H+V)x=yo, 

where H and V are symmetric, positive semi-definite matrices and H + V is also 
symmetric and positive semi-definite. A necessary and sufficient condition for a 
solution of (1) to exist is that yo be orthogonal to the null space of H + V. Of course, 
if this null space is empty, H + V is nonsingular and a unique solution x exists but 
in some applications this is not the case. For example, solving Laplace's equation 
with Neumann boundary conditions by finite difference methods leads to an equa- 
tion (1) in which H + V is singular. 

The alternating direction method applied to (1) may be defined by 

Xk+(1,2) = - (H + ak+?D) [( V - ak+?D)xk - Yol, 

Xk+1 = - (V/ + ak+lD) [(H - ak+?D)Xk+(112) - YoI, 

where x0 is an arbitrary initial vector, D is a symmetric positive definite normalizing 
matrix, usually defined as in [3], [8], or [12], and the ak are the acceleration param- 
eters. It has been shown [4] that there exist parameter sequences for which the 

iterates Xk converge to a solution of (1), even when H + V is singular. However, all 

algorithms known to the authors for generating acceleration parameters which 

result in rapid convergence of the iterates Xk degenerate to the absurd choice ak = 0. 

This paper shows how useful acceleration parameters may be chosen for singular 
problems. 

2. Preliminaries. WA e shall make use of the notation and some of the results of 

[4] to set the stage for our analysis. We begin with the following assumptions: 
(a) The vector yo is orthogonal to tj(H + V) = the null space of H + V. 

(b) The sequence {ak} is monotone and cyclic; i.e., a, > a2 > ... > at > 0, 

ak = ak+t 

The integer t will be referred to as the cycle length. 
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Now define matrices Tk and Z by 

Tk = (V + akD)-(H - akD)(H + a.D)-1(V -akD), 

Z =Tj7T_...i T, 

so that Z is the iteration matrix after one cycle of t iterations. As in [4], let 

HI = D-"12HD-112 V1= D-1=2uD-1/2 

T 12 = (V1 + a1)-(H1 - akI)(Hi + akI) 1(V1 -akI), 
1/2 -1/2 no tro tr. I Zap = DD - -= T T, 

and let E denote the orthogonal projection on q(Hi + V1). 
The following results are established in [4] and will be useful in our analysis: 

(T1) The matrix Z, coincides with E on i(Hi + V1). 
(T2) Let a, : be any positive numbers with a < 3. Then there exists a positive 

integer to such that any parameter sequence S of the form 

S = {a,, * , ato), (3 > a, > ... > at, ? a, ak =ak+90; 

will cause the powers Z1n to converge to the projection E and the powers Z' to 
converge to D-"12ED"12, a projection on q(H + V). 

(T3) With the same assumptions as in (T2), the sequence JXk} converges to, a 
solution of (1). 

From this point on we assume that t is fixed and that k is a multiple of t, so that 
our discussion is aimed at methods in which cycles of t iterations are always com- 
pleted. If x is any solution of (1), since x is transformed into itself by (2), we have 

X - X= Zklt(x - X0) 

(3) = Z (x -o), n = k/t an integer. 

It is easily seen from (3) and (T2) that, when the Xk converge to a solution of (1), 
they converge to that solution w whose projection on -q(H + V) satisfies 

D-'12ED112W=D-11/2ED'12XO . 

Setting x w in (3), we have 

W - Xk - Z (W - Xo) 

(4) = (Zn - D-"12ED"2) (W - X0) 

- (Z -D 1/2ED112)n(w - x0). 

It is common practice (see, e.g., [9, p. 67]) in dealing with iterative methods such 
as (2) to define the rate of convergence in terms of the spectral radius of the itera- 
tion matrix. Thus, if the spectral radius is used as a criterion, equation (4) reveals 
that we should seek to minimize 

p(Z -D-12ED"12) = sup X(Z -D-12EY/2) 

the supremum being taken over all eigenvalues of Z -D- 1 D2ED"2. But 

Z -D-'2ED'/2 = D-"12(Zl - E)D112 
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so that it suffices to minimize p(Zi -E). This minimization will be performed in 
the next section for a restricted class of pairs of matrices (H1, V1). 

3. Commutative Analysis. In this section we will show how to select acceleration 
parameters which minimize p(Z1 - E), assuming that H1V1 V1H1. We will also 
show how to apply these acceleration parameters in the noncommutative case. 

The assumption of commutativity, while necessary for our analysis, is rarely 
satisfied in practice. Nevertheless, parameters based on the commutative assump- 
tion have worked well in a variety of nonsingular problems [1]. Our own experience 
with singular problems is along the same lines. A variety of heat conduction prob- 
lems have been solved using the program HOT [7] in which both matrices H and 
V were singular. In some of these problems, H + V was also singular. Observed 
convergence rates, using the parameters suggested by our theorem, were sub- 
stantially the same as those observed in nonsingular problems. 

Let a and f3 be given with 0 < ca < 13. Let X and A be real variables and let R 
be the point set in the (X, /i) plane defined by 

R = (0,0) U {(X,0):a < X <? } U {(0,u):a < / < } U {(,i): a < Xpry ? j}. 

The set R is shown in Figure 1. Let e be the collection of all pairs (H1, V1) of sym- 
metric N X N matrices which commute, H1V1 = V1H1, and which satisfy the con- 
dition that if X and /i are eigenvalues of H1 and V1, respectively, having the same 
eigenvector, then (X, ,0) E R. 

Consider a set of positive acceleration parameters a1, * , at . As has been seen, 
the spectral radius p(Zi - E) is a measure of the rate of convergence of the itera- 
tions (2) using these acceleration parameters. Therefore, the function 

r (a, ***, at) = sup {p(Zi - E): (H1, VT) EC (} 
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is a measure of the least favorable rate of convergence that would be encountered 
in using the parameters a1, ,**, at on pairs of matrices drawn from the class e. 

The following theorem gives a set of parameters that makes this least favorable 
convergence rate as good as possible. To state the theorem, we introduce a function 
f(al, , at) defined by 

(5) f(a, * , at) = max ][ I a, sj 
a<8s0 j.1jaj+sl' 

Let di, * * , dt be the unique (in descending order) set of parameters which mini- 
mize f(a1, * , at). The existence and uniqueness of this minimizing set of param- 
eters is proved in [10]. 

THEOREM. If a1, - 
* * , at is a nonnegative set of parameters, then r(ai,, , , 

_ r(ai, , at) =f(al, - ,at). 

Proof. Let (H1, V1) E e and let al, , at be a nonnegative set of parameters. 
Since H1 and Vi are symmetric and commute, there is an orthogonal basis of com- 
mon eigenvectors of H1 and V1. If w is an element of the basis, and if Hw = Aw, 
Vjw = ,uw, then w is an eigenvector of Z1 with eigenvalue 

v-ft (aj - X)(a3-, 
j=i (aj + X)(a, + IA) 

E is the orthogonal projection on the subspace generated by the basis vectors w 
such that N + , = 0. If X + iA = 0, then X = ,u = 0 and v = 1. Hence, w is an eigen- 
vector of Z, - E with eigenvalue 0 if X = = 0 and with eigenvalue v otherwise. 
Since (N ,u) E R, it is easily seen that I v I < f(al, * , at) when N + IA > 0. Hence, 
p(Zi - E) < f(a1, ***, at), and, therefore, 

(6) r(a1, ***, at) ? f(a1, **, at). 

By compactness, the maximum in (5) must be obtained for some s C [a, 3]. Let 
H1 = sI, Vi = 0. Then ( H1, V1) C C, and p(Zi - E) = f(a1, * , at) . Hence, using 
(6), 

r(al , * * X at) = f(al, . . , at)- 

The rest of the theorem follows from the definition of ad, .* ,t 
The parameters Ji, -**, at may be considered optimal parameters for matrix 

pairs in the class C. These parameters are determined by the numbers a, A, and t. 
There is in the literature a variety of methods for computing them [10, 11] or ap- 
proximating them [2, 12]. 

If this theorem is compared with equation (7.42) of [9], it is seen that, using the 
parameters al, - * *, &t, a nonsingular problem may be expected to converge twice 
as fast as a singular problem with the same parameter bounds a and f3. 

In the noncommutative case, H1Vi 5 V1H , nothing is known about the nature 
of an optimal set of parameters. Nevertheless one can, with proper interpretation, 
apply the optimal commutative parameters a, ... , at in the noncommutative 
case. It suffices to observe that a and A are, respectively, lower and upper bounds 
for the least positive and the largest eigenvalues of the matrices H1 and V1, 
(H1, V1) C e. If H1Vj # V1Hi we may still construct such lower and upper bounds 
a and ,3 and from these obtain parameters (>, * , at for use in (2). The upper bound 
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d6 may be obtained from Gershgorin's theorem. A method of obtaining lower bounds 
for the least positive eigenvalue of a certain type matrix is discussed in [51. 

Bettis Atomic Power Laboratory 
Westinghouse Electric Corporation 
West Mifflin, Pennsylvania 

1. G. BIRKHOFF, R. S. VARGA & D. YOUNG, Alternating Direction Implicit Methods, Ad- 
vances in Computers, Vol. 3, Academic Press, New York, 1962. 

2. C. DE BOOR & J. R. RIcE, "Chebyshev approximation by a fl (x - ri)/(x + s*) and appli- 
cation to ADI iteration," J. Soc. Indust. Apple. Math., v. 11, 1963, pp. 159-169. MR 28 # 466. 

3. J. DOUGLAS, "Alternating direction methods for three space variables," Numer. Math., 
v. 4, 1962, pp. 41-63. MR 24 S B2122. 

4. J. DOUGLAS & C. PEARCY, "On convergence of alternating direction procedures in the 
presence of singular operators," Numer. Math., v, 5, 1963, pp. 175-184. MR 27 # 4384. 

5. W. H. GUILINGER & R. B. KELLOGG, "Eigenvalue lower bounds," submitted to the 
Bettis Technical Review. 

6. D. W. PEACEMAN & H. H. RACHFORD, JR., "The numerical solution of parabolic and 
elliptic differential equations," J. Soc. Indust. Appl. Math., v. 3, 1955, pp. 28-41. MR 17, 196. 

7. R. B. SMITH & J. SPANIER, HOT-1: A Two Dimensional Steady-State Heat Conduction 
Program for the Philco-2000, WAPD-TM-465, Bettis Atomic Power Laboratory, Pittsburgh, 
Pa., 1964. 

8. J. SPANIER & W. H. GUILINGER, "Matrix conditioning for alternating direction 
methods," Bettis Technical Review, WAPD-BT-29, 1963, pP. 69-79. 

9. R. S. VARG k, Matrix Iterative Analysis, Prentice-wHall, Englewood Cliffs, N. J., 1902. 
MR 28 #1725. 

10. E. L. WACHSPRESS, "Optimum alternating-direction-implicit iteration parameters 
for a model problem," J. Soc. Indust. Appl. Math., v. 10 1962, pp. 339-350. MR 27 #921. 

11. E. L. WACHSPRESS, "Extended application of alternating direction implicit iteration 
model problem theory," J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 994-1016. 

12. E. L. WACHSPRESS & G. J. HABETLER, "An alternating direction implicit iteration 
technique," J. Soc. Indust. Appi. Math., v. 8, 1960, pp. 403-424. MR22 #5132. 

An Iterative Method for Computing the 
Generalized Inverse of an 

Arbitrary Matrix 

By Adi Ben-Israel 

Abstract. The iterative process, X+ = Xn(21 - AX.), for computing A-1, 
is generalized to obtain the generalized inverse. 

An iterative method for inverting a matrix, due to Schulz [1], is based on the 
convergence of the sequence of matrices, defined recursively by 

(1) X,+1 = X,(21 - AXn) (n = 0, 1, **) 

to the inverse A` of A, whenever X0 approximates A-'. In this note the process 
(1) is generalized to yield a sequence of matrices converging to A+, the generalized 
inverse of A [2]. 

Let A denote an n X n complex matrix, A* its conjugate transpose, PR(A) the 

perpendicular projection of Em on the range of A, PR(A.) the perpendicular projec- 
tion of En on the range of A*, and A+ the generalized inverse of A. 

THEOREM. The sequence of matrices defined by 

(2) XYn+1 - X.(2PR(4) - AX,) (t = 01, 
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